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The probability distribution function of plasma density fluctuations at the edge of fusion devices is known to
be skewed and strongly non-Gaussian. The causes of this peculiar behavior are, up to now, largely unexplored.
On the other hand, understanding the origin and the properties of edge turbulence is a key issue in magnetic
fusion research. In this paper we show that a stochastic fragmentation model, already successfully applied to
fluid turbulence, is able to predict an asymmetric distribution that closely matches experimental data. The
asymmetry is found to be a direct consequence of intermittency. A discussion of our results in terms of recently
suggested Bramwell-Holdsworth-Pinton universal curve �S. T. Bramwell, P. C. W. Holdsworth, and J.-F. Pin-
ton, Nature �London� 396, 552 �1998��, that should hold for strongly correlated and critical systems, is also
proposed.
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I. INTRODUCTION

The investigation of the mechanisms underlying turbu-
lence is a key topic in fusion research and, more broadly,
plasma physics. In particular, thanks to the steady increase in
computing power, the direct numerical solving of fluid or
kinetic equations is more and more widespread. However,
direct numerical simulations still have some drawbacks: First
of all, one can hardly hope to tackle the full set of equations;
rather, one must truncate them by choosing a priori the rel-
evant instabilities and this, of course, introduces some arbi-
trariness as well as loss of accuracy and predictive power.
Second, turbulence is a mechanism involving widely differ-
ing spatial and temporal scales, and this is demanding for
numerical computations. Finally, a difficult task with numeri-
cal simulations is how to abstract basic plasma properties
from huge amount of data; that is, it is often difficult to grasp
any intuitive picture of the problem at hand. For these rea-
sons, phenomenological models are valuable: They guess
from the outset some basic properties of the plasma, and
complement them with an intuitive �but hopefully accurate�
picture of the microscopic dynamics. The result is a model
with good interpretive and predictive capabilities realized
with an economy of concepts, mathematical, and numerical
machinery. The drawback is, usually, an agreement with ex-
periment not exceedingly accurate.

Within this class of models, the best known is the ap-
proach based on the self-organized criticality �SOC� para-
digm, put forth by Carreras and co-workers �see, e.g., �1,2�,
for its description and application to plasmas�, which has
enjoyed widespread consideration. However, alongside
works supporting this theory there is also evidence suggest-
ing that SOC alone is too simplified a picture to account for
all of the complexity shown in real plasmas. In particular, a
key element required by SOC is self-similarity of plasma
behavior over the scale of lengths relevant for transport. Al-
though this requisite was claimed to be satisfied in several
devices �3�, some other experimental results �4�, supple-
mented also by simulations �5�, suggest that this might not be
the case, at least in a number of other cases. For this reason,
alternate approaches have been suggested, e.g., based on
shell models �6�.

A common finding of the studies devoted to the statistical
properties of plasma turbulence is that many of its features
are universal: independent of the device and, hence, of the
details of the free energy driving the turbulence itself. This
means that, in principle, one could develop a model based on
very general principles, without any reference to specific
mechanisms triggering and sustaining turbulence that, in-
stead, are necessary in traditional fully numerical methods,
and that can be specific to each setting. In this paper we
present an attempt of edge plasma turbulence modeling
based on a statistical approach à la Kolmogorov.
Intermittency—i.e., departure from self-similarity—is natu-
rally embodied into the model and, indeed, constitutes a fun-
damental part of it. The model is patterned after the paper by
Portelli et al. �7� �hereafter referred to as I�, with small dif-
ferences due to the different settings and quantities under
observation. We will show, using this model, that the experi-
mental probability distribution functions �PDFs� for particle
density fluctuations at the edge of a fusion device may be
fairly well recovered.

II. MODEL FOR INTERMITTENT TURBULENCE

The picture we are going to propose is the following: We
suppose that particle density plays the role of a passive scalar
advected by eddies of various sizes. Mixing processes make
density almost uniform within each eddy, while two eddies
may have even widely differing densities. A fragmentation
process, which preserves the total particle density, does exist,
splitting large eddies into smaller ones. Also, molecular pro-
cesses contribute to further fragment eddies into a gas of
independent particles and, in particular, such mechanisms are
dominant at small lengths, i.e., no eddies are thought to exist
below a given size �dissipative length� �. At the other ex-
treme, there is, instead, the macroscopical scale L that sets
the typical size over which actual measurements are
performed. A comment is in order at this point. In fluid tur-
bulence studies one has a clear-cut distinction between the
medium �the fluid� and the passive scalar advected �usually,
the flow velocity or acceleration�. In this case, instead, the
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medium and the passive scalar do appear to coincide �eddies
are made of particles�.

Any experimental measurement of density results par-
tially from this gas of independent eddies over all allowed
sizes and partially from the background of single-particle
contributions. Experimentally, it has been found in a number
of devices that the relative weights of the two contributions
are comparable, when not in favor of the eddies �this state-
ment addresses, to be precise, to particle flux, rather than
particle density, but we are allowed to think that the results
should be similar. See Refs. �3,4,8��. The independent-
particle part alone would provide a purely Gaussian PDF of
density fluctuations. Adding a substantial contribution from
the coherent eddies will drastically modify the tails of this
distribution. The central region around the maximum will be
modified to a lesser extent, remaining approximately Gauss-
ian. The degree of the perturbation and the width of this
region depend on the relative weights of the two contribu-
tions as well as on the details on the statistics.

We use, as customary, a discrete set of scales l, labeled by
the index n, 0�n��; adopt the standard convention of a
constant ratio between two adjacent scale lengths, �ln−1 / ln�3

��, and choose the largest and smallest scale equal to the
macroscopical and dissipation length, respectively: l0�L,
l�=�; thus ��= �L /��3�Re. With the latter definition we
imply that �� plays the role of an effective Reynolds number.

Another key quantity is the instantaneous local density
flux at scale ln, �̃n�r , t� �units �length�−3� �time�−1�, i.e., the
flux of matter that from largest scales flows into structures at
scale ln. Experimentally, only the largest scales are likely to
be directly measurable. The smaller ones will be averaged by
the measuring device and procedure. Hence, we cannot work
directly with �̃n�r , t�, rather the density flux must be aver-
aged over the macroscopical observation volume

�n�t� =
1

L3 � d3r �̃n�r,t� . �1�

Notice that the mathematical averaging �1� has an exact ex-
perimental counterpart when the measurement is performed
over a large volume, if compared with the average eddies’
size. This could be the case of density fluctuations measured
through Neutral Beam Emission spectroscopy. At the edge,
measurements are performed through Langmuir probes, of
moderate size even for plasma fluctuations. On the other
hand, the typical measurement time cannot be made small
with respect to all time scales. Hence, the average �1� is
experimentally a time average, translated to a spatial one
through ergodicity or Taylor’s frozen turbulence hypothesis.

At each scale ln, molecular processes will remove part of
the particles from the coherent behavior within the eddy. We
designate by �0 this rate of consumption per unit volume.
This quantity, by definition, cannot depend from scale l.

We introduce now the excess instantaneous density:

	N�t�= �N�t�− N̄�. It is the difference between the instanta-
neous density at time t, N�t�, and its long-time averaged

value N̄. The excess density is determined by the net differ-
ence between source and loss terms at each length scale,
summed over all scales

	N�t� = 
�
n

��n − �0� . �2�

The time scale 
, as remarked by Portelli et al., should be a
purely macroscopical parameter, determined by density in-
jection at the largest scales �fueling mechanism�. As such, it
does not depend from scale l, nor is it likely it depends
strongly from any microscopical detail within the present
model.

Rigorously speaking, a fully consistent theory must pro-
vide the dynamics of �n�t� and, thus, of 	N�t�. Lacking such
a theory, we must disregard dynamics and turn to a statistical
point of view, making the assumptions that the ��n−�0� are
statistically independent stochastic variables. Indeed, both �n
and �0 individually might be stochastic variables. However,
even though �0 may fluctuate, it depends from molecular
processes, not from fluid ones; hence, we expect that
rms���0�� rms���n�, and �0 will be considered as a con-
stant offset.

It is Eq. �2� where intermittency comes into the model: in
the standard Kolmogorov’s K 41 turbulence theory, 	N is not
a stochastic variable but a constant. Since, by definition, its
average value must be zero under stationary conditions, it
must be null at all times as well. Hence the right-hand side of
Eq. �2� must be postulated to be identically zero, too, while
in our approach it is only in a statistical sense: �	N	=0, but
	N�0 almost always.

The PDF for N, P�	N�, can be written starting from the
product of PDFs for ��n−�0�



n

p��n − �0�d��n − �0� = p��
n

��n − �0��

n

d��n − �0� .

At this stage, we make the replacement of variables 	N
=�n��n−�0� ,x1=�1−�0 ,… ,x�=��−�0. Thus, apart for a
trivial volume element, we may identify

P�	N� = 

n

p��n − �0� . �3�

This is the standard problem of computing the PDF for a
quantity sum of a finite number of other stochastic variables.
The general solution is reviewed in a recent paper �9�, al-
though is fairly straightforward. We introduce the character-
istic function �k� :�k�=
np̃n�k� is the product of the Fou-
rier transforms of p��n−�0�. This yields

P�	N� = �
−�

+� dk

2�
eikN�k� . �4�

In order to simplify notation, here and henceforth we will
normalize data to unity standard deviation: ��	N��1.

The fundamental role is played by the PDF for the flux,
p��n�. A lot of effort was devoted in turbulence studies to
provide an analytical expression for this quantity, starting
from the log-normal expression by Kolmogorov and
Obukhov �10�, to the log-Poisson by She and Levèque �11�,
just to mention some. Here, we note that Eq. �1� can be
discretized into a sum over small equal-volume cells

F. SATTIN AND N. VIANELLO PHYSICAL REVIEW E 72, 016407 �2005�

016407-2



�n�t� 
	V

L3 �
i

�̃n�r̄i,t� , �5�

where i is an index labeling one generic cell, r̄i a point rep-
resentative of the position of the cell, and 	V the volume of
the cell. Each cell may be given the size of the eddy at that
scale: 	V= l3. Hence, the total number of cells is given at
each scale by ��ln���L / ln�3�= ��n� �the square brackets �¯�
stand for the integer part�. We carry further the statistical
view, and consider the �̃n�r̄i , t�’s as � stochastic variables.
They are, by definition, positive-definite quantities: �̃n�r̄i , t�
�Zi

2. We can make just a few statements about the stochastic
variables Zi’s: �i� they are indentical statistically independent
variables; �ii� the average value of �̃n �hence Z2� must coin-
cide with �0. We expect PDF��̃n� also to be a reasonably
well-behaved function, vanishing to infinity and at �̃n=0 �by
continuity, taking into account that negative values are not
permitted�. Finally, dealing with macroscopic systems, it is
reasonable to assume PDF��̃n� to have a single maximum,
practically identical with the average value �0. All these req-
uisites are fulfilled by a chi-squared PDF for Zi

2 or, in
other terms, by a normal distribution for Zi : P�Zi�
�exp�−Zi

2 / �2�Z
2��. Hence, we may write, using Eq. �5� to-

gether with the relative independence of variables �̃

p��n� = p��
i

�̃n�i�� = 

i

p��̃n�i��

= � �

�0
�� �n

�−1

����
exp�− �

�n

�0
� , �6�

where we have already taken into account that the average
value ��n	=�0. The result �6� is a textbook exercise of com-
position of probability densities; the right-hand side is a
gamma �or �2� PDF.

This is the same expression used in I, guessed there just
on the basis of the nice fit with experimental data. Here, we
are also providing some theoretical ground for it: Even
though it must remain clear that ours is not a first-principle
derivation, and there is some amount of arbitrariness, we
think we have provided some sound reasons to suspect that
Eq. �6� is a valid candidate to the true PDF.

Since the PDF of �n�t� plays a major role, we explore it
further. We found that it is important to guess the precise
analytical form of p��n�, but is not critical: Portelli et al.
showed that two rather different analytical expressions, log-
normal and �-squared, yield predictions that are hardly
distinguishable—within experimental error bars—over the
available range of variation of the independent variable, with
a little advantage in favor of the �-squared PDF; also theo-
retical reasons have been long known, suggesting that the
log-normal is not the ideal candidate PDF �10�. Hence, from
here on, we will limit ourselves to consider Eq. �6� for p��n�,
knowing that even departures from this form—within some
limits—are not likely to give remarkable differences.

Notice that here we are speaking about PDFs for �n vari-
ables. They are different from the PDF for 	N, which is
instead the physically relevant variable. However, it is
known that log-normal PDFs are often associated with frag-

mentation process, hence we may expect P�	N�, also, to be
close to a logarithmic-normal curve. In the paper �12� we
developed a semiphenomenological model for density fluc-
tuations. A model charge continuity equation was written,
yielding a functional dependence between density and poten-
tial fluctuations. The latter ones had to be guessed from ex-
periment. The result was, approximately, a log-normal form
for density fluctuations that fitted well the data over most of
their range. It is interesting to see that the result �12� can be
accommodated within the present model by choosing a log-
normal form for p��n�, together with �=0.

The Fourier transform of p��n−�0� is, thus,

p̃�k� =
exp�ik�0�

�1 + i
k�0

�
�� . �7�

This expression is straightforwardly generalized to the prod-
uct over the index n, and one gets, from Eq. �3�

P�	N� = �
−�

+� dk

2�
exp�ik	N + �

�
�ik�0

− � ln�1 + i
k�0

�
���

=
1

2��0
�

−�

+�

d� exp�i��	N

�0
� + �

�
�i�

− � ln�1 + i
�

�
��� , �8�

where we have written for compactness the sum over the
index �, but remember that, more appropriately, it is over
n �0�n���, and �= ��n�. Apart from a trivial normalization
factor, the fitting formula �8� depends upon three free param-
eters: �0, �, � �or Re�. The former two are likely to be
related solely to the microscopic processes governing the tur-
bulence. The third, playing the role of Reynolds number,
should, in principle, depend upon the macroscopic setup as
well.

III. TESTING AGAINST RFX DATA

In the following, we will test our model against experi-
mental data from the reversed field pinch experiment �RFX�
�13�. The data were taken at the very edge plasma using
Langmuir probes with a sampling frequency of 1 MHz, dur-
ing the flat-top phase of pulses. The total number of collected
points ranges between 2�104 and 4�104. Langmuir probes
are operated in RFX only with low-current low-temperature
plasmas. Edge temperature varyies in the 10–30 eV range for
these pulses, and is only weakly dependent upon core tem-
perature. For the same conditions, edge density is less than
1�1019 m−3. More details about experimental arrangements
can be found in �14�.

Figure 1 is the main result of this paper and features a few
samples of the PDFs for density fluctuations, together with
fits produced using Eq. �8�. From top to bottom, we feature
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different probe insertions, for excursions differing up to
about 1 cm. The best fitting curves—the solid ones—yield in
all cases an excellent interpolation of experimental data. Er-
ror bars, of course, account for qualifying the goodness of a
fit. We are not able to quantify the errors due to measure-
ment. Limiting to those due to statistics �and assuming Pois-
sonian statistics�, we can state that they would be of the same
size of the symbols as appearing in the figure. The �0 pa-
rameter represents a scaling factor and is important in decid-
ing the slope of the PDF at high 	N’s. The parameter � has
typical value 40, yields a fraction between 3 and 4 for
relative linear sizes of eddies at two successive scales. As for
�, from the structure of the function �8� it is expected that
the terms with higher �’s give smaller and smaller contribu-
tions. In Fig. 1, top plot, it is shown that the difference be-
tween retaining terms up to �=3 �chain curve� or �=6
�solid curve� is fairly small. On the other hand, small �’s
gauge the importance of the departure of self-similarity,
since this is expected to be more relevant for small scales,
close to the dissipative ones: let us imagine, in the sum �8�,
to remove the lowest terms, leaving only higher �’s. This
corresponds to imposing self-similarity at the smallest scales.
The result is that the PDF P�	N� approaches a Gaussian.
Hence, this stresses again that departures from self-similarity
are essential to recover experimental data. The same result
was found on RFX through a wavelet analysis of experimen-
tal data. Wavelets filtering allows to discern contributions
from differing time scales �or space scales, if Taylor’s frozen
turbulence hypothesis holds�. At the largest scales, all PDF’s
were found to converge towards Gaussians, while departures

from Gaussians became more and more relevant towards
smaller scales �4�.

The issue of departure from self-similarity has been
pointed out by several papers to be a key feature of plasma
edge turbulence �4�. This fact was often used negatively, i.e.,
to rule out some models as unsuitable candidates for the
description of turbulent transport. In this paper we were able
to use it as a key element in a constructive fashion, as an
ingredient within a microscopical plasma modeling. The
physical process we have built is basically a direct transfer of
particle density, from larger to smaller scales. The issue of
the existence of direct or inverse cascades is still an open-
ended question in turbulence, both for neutral fluids as well
as for plasmas. It is known, by example, that two-
dimensional magneto hydrodynamics �MHD� predicts an in-
verse cascade process for energy. The Reynold stress is the
term in fluid or MHD equations that may interchange energy
between different scales in plasmas. Indeed, theoretical
speculations do exist since long supporting the idea that both
kinds of cascades may exist in plasmas—possibly depending
on scales �15�. Experimentally, only few partial results still
do exist, aimed at investigating the effects of this term. The
evidence coming from them, at present, is that such energy
transfers do actually occur �16� and that may be functions
not only of spatial scale but also of the position into the
plasma �17�. Of course, since no straightforward correspon-
dence may be envisaged between energy and density behav-
ior, this can give just an insight of what may be expected for
density. Hence, the whole question whether, in this paper, we
have been describing a mechanism truly at work in plasmas
is largely unanswered, although the good agreement obtained
here may be seen as a hint in favor of the existence of direct
cascades.

IV. CONCLUSION

Summarizing, we think we have been able to give a fairly
good account of phenomenology within a single interpretive
framework. Up to now, our approach has led practically to a
fitting formula containing some arbitrary parameters that are
just fixed by matching PDF data. It would be reassuring to be
able to relate the numerical values of these parameters with
corresponding quantities actually found in plasmas. Let us
try to do this step further: the most straightforward quantities
to be dealt with are L and �, the characteristic length scales
involved. An intuitive meaning for L is the typical scale at
which coherent structures are observed, that is, on the order
of centimeters. A bit more difficult is attaching a meaning to
�; however, a lower bound for it is naively found: � cannot
be smaller than Debye length �D, since at this length the
fluidlike description of plasma must break down. Hence, we
may assume ���D. From previous paragraphs, and using
typical values for �, � as arising from Fig. 1, we get � /L
=�−�/3�10−3, or ��10−5 m. This is comforting since—in
RFX—�DO�10−6÷−5� m.

To finish with, we address another important issue, corre-
lated in the present paper: a considerable interest has been
raised in the past �and still is� in searching for unifying fea-
tures from disparate turbulent systems, independently from

FIG. 1. The symbols represent the PDFs of experimental density
fluctuations, from top to bottom, deeper to more shallow probe
insertion. The density is normalized to the experimental mean
square deviation, and shifted by an offset so that the maximum of
the PDF is for 	N=0. The statistical error bars are about the same
size of the symbols. The curves, Eq. �8� for various values of pa-
rameters �0,�,�. Top plot: the solid curve ��0=1.1, �=45, �=6�;
dashed curve ��0=1.1, �=17, �=6�; dotted curve ��0=1.8, �=45,
�=6�; chain curve ��0=1.1, �=45, �=3�. The chain curve is al-
most perfectly overlapping the solid curve. Middle plot: ��0=0.95,
�=45, �=6�. Because of the smaller number of counts, in order to
keep statistics constant, this plot has been generated using lesser
bins. Bottom plot: ��0=0.5, �=35, �=6�.
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specific models. Undisclosing universal aspects, common to
all or to a class of turbulent systems, may shed light on the
underlying physics, when lacking better information. Again,
we limit here to statistical tools dealing with PDFs. In recent
years, some interesting works appeared concerning universal
features of PDFs in several strongly correlated systems �18�.
The suggestion, there, was that PDFs of fluctuations follow
just one universal curve �Bramwell-Holdsworth-Pinton
�BHP� curve�, a generalized form of the Gumbel’s distribu-
tion Ga�x�. Gumbel’s curve is well known in statistics, giving
the probability of picking the ath largest value from an en-
semble of uncorrelated variables. Connections between these
systems and extreme value distributions, hence, arise intu-
itively. The BHP curve is peculiar in that a is universal and
noninteger: a=� /2. It was suggested that this value repre-
sents an effective number of degrees of freedom for a system
of correlated variables. Indeed, BHP curves apparently
strongly resemble the skewed distributions we have found in
Fig. 1. Hence, the question whether BHP approach could be
extended to our plasmas appears fairly interesting.1

As far as we understand, however, the matter is not still
entirely settled: there are claims that BHP functions could

not be truly universal �20�; also, Watkins et al. �21� pointed
out that long-range correlations could not be the only ingre-
dient leading to the BHP curve, as, for example, finite size of
the system could also be an ingredient. Finally, Rypdal and
Ratynskaia �22� carried out recently an analysis of fluctua-
tions in a magnetized �but not fusionist� plasma using,
among other tools, the BHP approach. Although their results
were encouraging, they commented that, unless one has a
very good statistics spanning long intervals, there are several
possible distributions fitting the data within approximately
the same accuracy. Hence, no definite claim may be made of
the superiority of one distribution over the others �we made a
similar comment in the previous paragraphs after Eq. �6��.
Keeping in mind this caveat, we performed a fit of data in
Fig. 1 using generalized Gumbel distributions, but leaving a
as a free parameter. Our results do not appear supporting
BHP distributions: The accuracy imposed by our data was
enough to definitely rule out the possibility a=� /2, while we
found rather that a reasonable fit of data was obtained only
for a0.1. Chapman et al. �23� already showed that a must
be a system-dependent parameter, and hence may depart
slightly from the BHP value �see also the paper by Noullez
and Pinton in �18��, but we are not aware of any satisfactory
interpretation of this parameter that may accommodate val-
ues lesser than unity.
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